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An ever increasing number of current problems in applied science are described by 
sets of kinetic equations which may suffer from the difficulty known as stiffness when 
numerical solution of the equations is attempted. In this article the common causes and 
effects of stiffness are examined from a general user’s point of view. Generally available 
measures for alleviating this type of difficulty are indicated. A specialized routine 
designed specifically for stiff systems (in that it enacts the measures which are discussed 
herein) is applied to a kinetic model of photochemical smog. Performance of the 
specialized routine is compared to a standard Adams predictor-corrector method as well 
as to the results obtained by another standard kinetics code which was originally 
applied to this model problem. Finally, the admissibility of quasi-steady state assump- 
tions on selected components in this system model is examined. 

INTRODUCTION 

Systems of ordinary differential equations having drastically different time 
constants often impose severe “d t limitations” upon numerical integration routines 
in order to insure stability. Such systems are known as time constant limited, or 
“stiff,” systems. To date, the problem of stiffness has been of concern mostly to 
engineers and to applied mathematicians. There is, in fact, a growing literature of 
formal methods which are directed at the difficulties of stiff systems. It would be 
quite impossible to deal properly with even a representative sampling of numerous 
specific approaches which have been advanced and which may, or may not, be 
suitable for stiff systems. Therefore that task will not be attempted herein. Instead 
I would try to call attention to the fact that, even though the difficulties of stiffness 
have been apparent since the advent of finite difference methods, the problem seems 
to have been barely recognized yet in physics. Of greater concern is the fact that an 
ever increasing number of problems in applied physics and chemical kinetics require 
(or at least would benefit from) the use of stiff solution methods. Among this 
number are nonequilibrium problems of all sorts; e.g. calculations of the temporal 
evolution of laser-heated plasmas, diagnostic analysis of discrete line spectra 

* This work was performed under the auspices of the U.S. Atomic Energy Commission. 
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from pinch-discharge plasmas, numerous astrophysical applications, chemical 
laser kinetics, and kinetic models of photochemical smog. There are, perhaps, 
a number of applications in transport theory, as well; such as radiation or neutron 
transport through a thick medium, where numerical methods invariably suffer 
from increment limitations. In view of this situation, the thrust of the present article 
is to qualitatively examine, from the point of view of a scientific practitioner, the 
nature of stiffness, its causes, its effects (or symptoms), and general requirements 
of numerical methods which are expected to adequately deal with this class of 
problems. This point of view also places a certain premium on the desirability of 
general solution routines which can satisfactorily be used by nonexperts in 
numerical analysis. In this vein, our experience with a routine of C. W. Gear’s [l-3] 
will be cited for the following reasons: the Gear routine is representative of modern 
stiff methods, it is specifically designed for general users, and we have found that it 
fulfills the claims made of it. Finally an example of a stiff photochemical smog 
problem will be presented and discussed. 

THE NATURE OF STIFFNESS 

A typical set of N ordinary differential equations can be written in the form 

M> = ~YiWl~~ = h(Y&>, 3w>, t> i,j= I,2 ,..., N. (1) 

Stiffness is a difficulty which is engendered in the very foundations of finite 
difference methods and has no bearing whatever on analytic solution methods. The 
emphasis of the present discussion is directed at large sets of ordinary differential 
equations where the individual equations are generally exceedingly nonlinear. In 
such cases numerical solution is perhaps the only reasonable a1ternative.l If the 
system is stiff, it becomes manifest in a readily recognizable way: incremental 
steps LI t in the independent variable t are constrained to inordinately small values 
in order to maintain stability of the numerical method. It can also happen that 
accuracy requirements restrict d t to very small values, independent of stability [4]; 
but most often stability is the factor of major concern. At any rate, one cannot 
tolerate dt being systematically restricted to such small values that a problem 
cannot be run to “completion” in a reasonable, economical number of steps. 
Further, it is difficult to assess in advance the degree of difficulty which is to be 
encountered with an arbitrary system. With this in mind, it is well to review a bit 
more closely the problem of error amplification, or stability, in finite difference 
methods. More complete treatments can be found in numerous places [4-61; so 

1 When sets become very large, analog or hybrid solution is a delicate matter which merits 
discussion in its own right. The present article is restricted to only digital solution methods. 



224 GELlNAS 

present considerations are intended only to be illustrative of the scope of the 
problem. For this purpose it is appropriate to consider the rather simple case: 

(dy,/dt) - h,yi(t) = 0, i=l )...) N. (2) 

The two basic ways of differencing Eq. (2) are explicitly (involving only current 
and past values of y on the right-hand-side of the equation): 

t Yi(b+d - Yi(L)l/~ fn+1/2 = hY&), i = l,..., N, (3) 
where 

At - tlL+I - t, = At, n+1!2 _ (4) 

and implicitly (involving future values of y on the right-hand-side of the equation)2 : 

Mn+d - Yikdl/A~n+1/2 = b&n+,). (5) 
The stability of a method is determined by the magnitude of the accumulated 
error Ei(tn) as a function of (increasing) t, . This error is defined to be the difference 
between the solution of the finite difference equation and the true solution of the 
differential equation. There generally exists a difference equation for I having 
one or more characteristic roots [413. In linear systems, these roots can be evaluated 
and the error bounds determined for increasing t, . For nonlinear systems of 
equations, generally acceptable, systematic stability theories seem to be unavailable 
at present. One can also look at the manner in which the error propogates from 
step to step. For the explicit scheme (Euler’s method) above (Eq. (3)) it can be 
shown that, to first order in At, 

4n+d = (1 + &At) 4,), i = I,..., N. (6) 

whereas for the implicit scheme (Eq. (5)) 

dtn+d = 4tnMl - &At), i = l,..., N. (7) 
To maintain a stable numerical solution, ei(tn) must not grow with increasing n. 

For exponentially growing solutions (Ai > 0) neither the explicit nor the implicit 
approach consistently enjoys a great advantage over the other in regard to the 
allowable At. But for decaying components (hi < 0) the implicit method (Eq. (7)) 
is stable for all At (this is known as absolute stability in the negative hAt half-plane) 
whereas the explicit method (Eq. (6)) is constrained by the smallest (most 
negative Ai) time constant 76 = l/j hi j throughout the problem history! Clearly 

2 There are, of course, numerous variations of these basic approaches, but Eqs. (3) and (5) 
adequately serve to demonstrate the matter of error amplification. 

3 Some of these roots may be spurious, in that they are due only to the particular numerical 
method and have nothing at all to do with the physical system. 

4 This is also referred to as A-stability. 
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when the 7i span a very large range, explicit methods may exact an extreme toll 
in the number of operating cycles that are required to obtain asymptotic solutions. 
This is the basic difficulty posed by stiff systems. 

Even so, a sizable portion of current kinetics work incorporates explicit Runge- 
Kutta methods, often coupled with approximation schemes such as making 
steady-state assumptions on selected components either initially or during the 
progress of the problem. This sort of tampering is ill-suited to most nonexperts 
and hardly seems advisable for uninitiated users. On the other hand, many implicit 
schemes avoid the stability problem but nevertheless may command great amounts 
of machine running time for other reasons. This is the case both for implicit 
methods which require matrix operations in their convergence schemes and those 
which do not. In the former case, matrix operations are costly. In the latter case, 
where matrix operations are not required, satisfactory convergence is often 
obtained only by using very small dt. Typical of this latter case are numerous 
implicit corrector methods which are used in conventional predictor-corrector 
routines. Further in this regard, Dahlquist [7] developed two important theorems: 
(1) no (k-step) explicit method can be A-stable, and (2) a linear multistep method 
(this constitutes a class of conventional corrector methods; e.g., Adams 
method, etc.) can be A-stable only for order-accuracy of two or less. The second 
theorem suggests the other dilemma in regard to solving stiff systems. That is the 
problem of maintaining sufficient accuracy throughout the problem evolution. 
Namely, while a first or second order A-stable method is free from stability 
limitations, it can happen that, for a reasonable step size dt, some solution com- 
ponents (those corresponding to the largest Xi’s) are often approximated rather 
poorly [4].5 The usual recourse is to go to higher order or else cut dt. An example 
of this will be seen with a conventional Adams method in a later section. It should 
be noted that higher-order methods often allow larger dt’s to be used for a given 
degree of accuracy per cycle (often referred to as local truncation error), but the 
range of Xdt space over which absolute stability holds is often restricted with 
higher-order methods (see Refs. [4] and [S]). At this point it may be well to cap- 
sulize, in some way, general requirements that will alleviate some of the difficulties 
associated with stiff systems. 

REQUIREMENTS OF A SUITABLE METHOD FOR STIFF SYSTEMS 

The primary requirement of stiff methods has been defined above. It is that a 
suitable method must be highly stable and accurate for values of dt which are large 

5 For example, Euler’s method of Eq. (3) approximates &rAt by (1 + A&), which is only first- 
order accurate in At. If the problem is scaled so that At < 1 over most of the evolution, higher- 
order methods can improve the accuracy for a given At. 
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enough to span the problem history in an economical number of operating cycles. 
To achieve this, some, or all, of the following considerations must be enacted. 
The method should be implicit for stability reasons. It should have a variable-order 
capability. This allows the use of high-order accuracy (greater than third or fourth 
order) when a low-order method would be too restrictive on dt. It also allows the 
method to be maintained at a very low order to insure A-stability6 when this is 
desirable. In most practical cases absolute stability is not required over the entire 
negative hd t half plane. Thus, larger d t’s can often be realized, along with absolute 
stability, by operating in a somewhat restricted region of hdt space with a higher- 
order method. Preferably a general stiff routine would automatically adjust the 
order-accuracy and d t optimally in this regard. Implicit routines using matrix 
methods most often require the Jacobian aj,/ay, . Numerical evaluation of 
Jacobians should be performed when needed, so as to relieve the user of tedious 
programming. Finally, the matrix equation solution method in an implicit routine 
shouldtake advantage of sparse matrix structure(many zero elements)when it exists. 

Having tried a number of less successful approaches on stiff systems (both in 
plasma physics and in chemical kinetics), 1 have found the Gear routine to be very 
satisfactory, to date, for general use in unexplored problem areas. This is not 
surprising inasmuch as that routine was designed with all of the above-mentioned 
requirements in mind. Specifically, Gear’s method is an efficient implicit corrector 
routine which uses a standard predictor formula to obtain trial values for the 
y(t,+J’s. It employs a modified Newton-Raphson method to converge the trial 
solutions. The user specifies local truncation error requirements. The user can 
specify a maximum allowable order (up to sixth order) and constant d t, or he can 
choose to automatically adjust the order and d t in optimal fashion, as indicated 
above. Further, Jacobians are evaluated numerically; and a sparseness capability 
can be employed, if the user so chooses. The Gear package which I have used also 
reverts to a standard Adams predictor-corrector (to seventh order) with the relevant 
user’s options mentioned above. 

It should again be emphasized that I am not so much concerned with a specific 
method as with the general properties of stiffness and with generally available 
measures for dealing with this class of problems. It is most important that 
physicists and/or other practitioners recognize the scope of the problem and 
understand its elements of cause and effect. As such, the present article is primarily 
intended to illustrate, by representative example, the factors which are at play in 
stiff systems.’ 

6A-stability implies absolute stability over the entire negative XAt plane. 
’ I have not only neglected specific mention of stiff methods and routines developed by others 

[9-111, but one of my own as well, simply because the Gear routine meets our requirements 
and is well enough documented (in addition to performing up to its claims) so that it serves our 
discussion herein with emphasis on the rudiments of stiffness from the user’s point of view. 
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A KINETIC MODEL OF PHOTOCHEMICAL SMOG 

Theoretical models for any number of chemical kinetic systems demonstrate 
the features of stiffness. The one which we will presently consider is a theoretical 
photochemical smog model proposed by Westberg and Cohen [12] to simulate a set 
of actual smog chamber measurements which were made by Schuck and Doyle [13]. 
Our concern is directed specifically to the solution of the equations of Westberg 
and Cohen. We are not particularly concerned at this point with the validity of the 
model as a good or bad simulation of the experiment, nor with the credibility of 
the experimental results per ,re.8 I simply want to illustrate comparative features of 
solutions of a given problem by a suitable stiff routine (code name, SMOG, using 
Gear’s method) as opposed to a conventional method, such as an Adams predictor- 
corrector (code name, ADAM). 

Westberg and Cohen’s photochemical smog model is based on the reactions and 
rate constants given in Table I. 
In reactions (35)-(38), R and R’ denote the radicals C3H, , C,H,OH, CH,OH, 
CH,CO, and CH, . Thus, reactions (35)-(37) actually represent five reactions each. 
Reaction (38) actually represents fifteen reactions. From the above sixty-four 
reaction processes, twenty-nine rate equations can be constructed. The rates which 
constitute the equations are unimolecular, bimolecular, or termolecular. For 
example, the photolysis of NO, by solar energy ha in Reaction (1) is unimolecular; 
this rate is expressed as the product of the NO, concentration (moles/liter) times 
the rate constant, 6.7 x 10-3, given above. Reaction (4) is bimolecular; its rate is 
expressed as the product of the NO concentration times the 0, concentration times 
the rate constant, 9.1 x 106. Reaction (3) is termolecular; its rate is expressed 
as the product of the 0 concentration times the square of the Oz concentration 
times the rate constant, 2.4 x 108. Reactions (18) and (29) involving inert con- 
stituents are treated as termolecular. The inert concentration is taken to be 
0.04 moles/liter. The dependent variables of these equations are those individual 
constituents which are both produced and destroyed in the reactions listed. They 
are: 

Y(1) = NO2 Y(7) = HO. 
Y(2) = NO Y(8) = HOz. 
Y(3) = 0 Y(9) = C,H, 
Y(4) = 0, Y(10) = H. 
Y(5) = C,H,O,* Y(11) = C,H, 
Y(6) = O3 Y(12) = HCO. 

8 Because wall effects were noted in the experiment, one should view the subsequent equations 
for an infinite, homogeneous system to be little more than a qualitative guide in regard to simulat- 
ing the experimental results. 



TABLE I 

Reactions and Rate Constants (in [-mole-set) 
Underlying Westberg and Cohen’s Photochemical Smog Model 

Reaction 

1. NOa + hv - NO+0 
(hv represents solar radiant energy) 

2. 0 +Ot + N, - 0% + N, 
3. 0 + 20, - 0, + 02 
4. NO C 0s - NO2 + 0, 
5. C,H, + 0 -+ C,H, + HCO 
6. @% + 0, + C,H,O, . 
7. CsH,02 * f NO - C,H,O * + NO, 
8. CaH,O * i- 0, ---f (CH,)CO f HO,. 
9. H&O + 0, ---f CO + HOz* 

10. HOz . + NO + NOZ+HO. 
11. CllHs + O3 - C&O, 

91 

< 

CH,O + CH,CO + CHBO * 

12. C,H,Os 

% (CHACO + CH,O + 0, - 0, , 

(P, and P, are the splitting fractions) 
13. CH&O + O2 --) CHSCOa . 
14. CHsCO, * + NO --f CH,CO% . + NO2 
15. CHsC03 3 + NO, -+ CH,CO,NO, 
16. CH&Os * i- C,H, - &H&HO + CHsCOz 
17. CHsCOz ---f CH, + CO2 
18. CH, + 0, -t M + CH,O,. + M 

(M is an inert constituent) 
19. CI-IsOz * + NO 
20. CH90 . + 02 
21. HO * + CaH, 
22. C:,H,OH + 0% 
23. CaHr,OHOe . + NO 
24. C,H,OHO . 
25. CH,OH + O2 
26. CHaOHOz * + NO 
27. CH,OHO * 
28. HO-+CO 
29. H * + O2 + M 
30. HO,. + CO 
31. 0 + co 
32. 0, + CO 
33. 2H0,. 
34. HO2 * + HO . 
35. RO*+CO 
36. RO, * + CO 
37. ROz * + HO, . 
38. ROa * + R’O, * 

- CHsO . + NO2 
+ CH,O + HO2 * 
- C:,H,OH 
+ CbHsOHO, . 
--f C,H,OHO . + NO2 
- (CH~,CO + CH,OH 
- CHzOHOz. 
---t CH,OHO . + NO, 
--f CH,O+HO* 
- CO, + H . 
--f HO%. + M 
- HO. + CO, 
- co, 
- co, + 0, 
- H,O, + 0, 
--f Hz0 f 0, 
- R.+COz 
+ RO.+CO, 
--f ROOH + 0, 
+ RO * + R’O * -I- 0, 

Rate constant 

6.7 x 1O-3 

2.03 x lo8 
2.4 x 1Os 
9.1 x 108 
3.8 x 1O1” 
1.0 x 106 
3.0 x 108 
1.0 x 10” 
1.0 x 106 
3.0 x 108 
7.0 x 103 

3.0 x 104 

1.0 x 108 
3.0 x 108 
1.0 x 107 
1.0 x 104 
1.0 x 10” 
3.0 x 10’0 

3.0 x 108 
2.0 x 104 
1.0 x 10’0 
2.0 x 106 
3.0 x 108 
3.0 x 103 
2.0 x 106 
3.0 x 108 
3.0 x 103 
8.0 x 10’ 
8.0 x 100 
1.0 x 10-G 
7.0 x 103 
1.0 x 10-10 
5.0 x 109 
5.0 x 100 
1.0 x 10’ 
1.0 x 10-G 
5.0 x 100 
1.0 x loa 
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Y(13) = co, 
Y(14) = C,H,Oe 
Y(15) = (CH,), CO 
Y(16) = C4H$03 
Y(17) = CH,CO 
Y(18) = CH,CO,. 
Y(19) = CH,C02. 
Y(20) = CH, 
Y(21) = CH,O* 

Y(22) = CH,O,* 
Y(23) = CIHsOH 
Y(24) = CIH,0H02* 
Y(25) = C,H,OHO* 
Y(26) = CHzOH 
Y(27) = CH,OHO,* 
Y(28) = CHzOHO* 
Y(29) = CO 

Ordinarily, equations for 0, , Nz , and CO, are deleted from the set because 
their concentrations remain constant for all practical purposes. I have retained 
the O2 and CO2 equations simply as an additional checkpoint against untoward 
solution behavior. I have used splitting fractions with values, PI = 0.70 and 
Pz = 0.30. Initially in this problem there are 2.8 parts per million (ppm) by volume 
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FIG. 1. Pollutant concentration (ppm) vs. time (min). 

of isobutene (C,H,) and 1 ppm NO, as well as the normal air concentrations of O2 , 
N, , and CO, . All other constituents are assumed to be absent initially. Figures 1 
and 2 show the evolution of the concentrations of C4H,, NO,, CO, and O3 from 
t = 0 to t = 80 min obtained from the program, SMOG.S These curves simply 
represent the fully time-dependent solutions which were obtained from the set of 
twenty-nine equations indicated above. 

s Westberg and Cohen’s results are also shown in these figures and will be discussed in the next 
section. 
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Using a CDC 7600 computer, this problem required 0.54 min running time for 
707 operating cycles with the stiff routine. In this problem matrix equations were 
solved by simply using matrix inverses and not exploiting sparse structure. Com- 
puting matrix inverses is generally costly and inefficient. For production routines 
it can be avoided in the interests of economy. However, since a modified Newton- 
Raphson method is used to converge the trial solutions y(tla+J, the matrix inverse 
was not computed every cycle in the present case. In fact, only 101 calls to the 
inversion routine were made, which is obviously a tolerable expense in this example. 

Time - minutes 

FIG. 2. Pollutant Concentration (ppm) vs. time @in). 

A local truncation error constraint of 1O-4 was sufficient to give reproducible 
results to three significant figures. The results were reproducible in the sense that 
the dependent variables and effective decay constants agreed to three significant 
figures with the results of the same problem run with an error constraint of 10-6. 
Of course, more cycles (1336) and more running time (0.68 min) are required with 
a constraint of 10-6. The main results quoted herein refer to runs with a local 
truncation error constraint of 10-4. To decide whether the implicit high-order stiff 
routine, SMOG, has done anything of real value or not, the same problem should 
be run with one or more of the conventional methods. A standard Adams predictor- 
corrector is a reasonable candidate for at least two reasons: it can be made to run 
more efficiently than, say, Runge-Kutta-Gill in terms of necessary function 
evaluations at high order accuracies (e.g., fourth order and higher). Second, if 
worst should come to worst because of very negative decay constants, we have 
noted that A-stability can be ensured by operating at second-order accuracy, or 
lower. Thus, if stiffness problems are encountered, at least they can be attacked 
stably by lowering the order. With this in mind, I ran the above problem using a 
variable-step size, variable order (as high as seventh) Adams method (this version 
of our code is named ADAM), which also was available in the “Gear package.” 
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In 4.32 min of running time on the C.D.C. 7600 computerlo, the Adams solution 
has consumed 97,100 operating cycles in order to advance the solutions to 
t = 6.39 x 1O-3 sec. At this stage dt was 7.84 x 1O-s set, and the dependent 
variables and effective decay constants differed from the solutions from the stiff 
routine by one to four percent. At about t = 1O-5 set the method was reduced and 
maintained at first-order accuracy in the interest of stability. From this point, a 
prodigious number of operating cycles (nearly 97 000 cycles) was required to 
advance the low-order Adams solutionsll from t = 1O-5 set to t = 6.39 x 1O-3 sec. 
This is clearly an example of forcing a solution to be A-stable (by lowering the 
order to two or less); but, in so doing the convergence limitations on dt (due to the 
low-order accuracy) were so severe that the problem could not advance to 
asymptotic solutions in reasonable amounts of machine time. Program SMOG 
also spent a sizable portion of its run time in this regime; but due to its higher-order 
capability (in a suitably restricted region of Xd t space), it was able to stably advance 
solutions to late times. Further details will appear in the next section. From the 
above example alone, it seems plausible that numerous applied problems may be 
sufficiently stiff that, for all practical purposes, they would have to be considered 
“off-limits” for conventional methods. Rather than abandon such problems, in 
the absence of suitable methods, there would be little else to do but take the refuge 
which is available in the invocation of quasi-steady state assumptions on some of 
the system components. 

QUASI-STEADY STATE ASSUMPTIONS 

We noted at least twice previously that conventional numerical methods may 
suffice, in some sense, if the original set of time-dependent equations is simplified, 
i.e., simplified by using quasi-steady state values at each instant t for some selected 
constituents rather than retaining in the initial set, and solving, the fully time- 
dependent equations for those selected constituents. For example, the equation for 
the oxygen atom concentration [O(t)], in the model we are considering is 

‘9 = WNWOI - IO(t)l{k,[O,(t)lIN,(t)l 

+ WMt)12 + UGWt)l + koPWf)l~, (8) 

where ki is the rate constant for the i-th reaction listed previously. By setting the 

I0 This is roughly equivalent to 20 min. running time on our C.D.C. 6600 machine. 
I1 This problem was also run with a Runge-Kutta-Merson routine [14] with even less satis- 

factory results than the Adams results. Namely, the RungeKutta-Merson routine goes unstable 
at about t = 2 x 1O-s sec., even with a very severe local truncation error constraint of 1O-s. 



232 GELINAS 

time derivative, a[O(t)]/dt, equal to zero; the instantaneous, or quasi-steady 
state (QS), oxygen atom concentration at any time instant t is given by 

[o(t)1Qs = (k,[O,(t)][N,(t)] + kJ0&)12 + k,tC,H,(t)l + kdCO(t)]} ’ (9) 

The usual practice is to simply employ this last expression for [O(t)lQs at each 
instant it is required in preference to retaining its time-dependent equation in the 
set which is to be solved. The question is, “How can one be sure that Eq. (9) is a 
good representation of the true value which would be obtained at that instant t 
by actually solving Eq. (8) in conjunction with the entire original set of time- 
dependent equations?” I have attempted to indicate, by implication, an answer to 
this question by first solving the fully general set of time-dependent equations for 
all variables, including [O(t)]. Then, at various times t, I evaluated Eq. (9) inde- 
pendently, based on my instantaneous general solution values for [NO,(t)], 
[O,(t)], [N,(t)], [C,H,(t)], and [CO(t)]. At this point I simply compared the latter 
to the former. From such “head to head” comparison it became obvious, after 
the fact, when a quasi-steady state assumption on the variable(s) in question was 
advisable, and when not. But to establish criteria apriori as to when a quasi-steady 
state assumption becomes justified for a given component seems to be fraught with 
peril; particularly for large systems in which the constituents are coupled in rather 
complex ways. 

When Westberg and Cohen solved their system model, they invoked quasi-steady 
state assumptions on [0], [HO.], [CH,CO,+], [CH,OHO.], [C,H,O.], [C,H,OHO*], 
and on [CH,O.] at each instant t throughout their solution history. Strictly 
speaking, such a procedure amounts to solving a different problem than the 
initially posed one. For a first-hand view of this matter I carried out the “head to 
head” comparison mentioned above by assuming my fully time-dependent stiff 
solutions (generated by program SMOG) to be true solutions. I then found the 
earliest times at which the separately calculated quasi-steady state values for the 
seven components listed above (and in Table I) agreed with the SMOG solutions, 
if at all. Indeed, if agreement does not exist at some stage, either a component does 
not physically reach steady state at times spanned by my numerical solution, or 
the stiff solutions are not close to being true solutions of the differential equations. 
1 found the SMOG solutions and the separately calculated instantaneous-steady 
state values for the seven selected components to agree to three significant figureP 
at, or before, t = 19.02 sec. The SMOG solution had to run 600 cycles to reach 
this point. In terms of operating cycles, the problem was nearly completed by the 
time quasi-steady state was a good approximation for all of the seven constituents. 
Table II summarizes, in chronological order, the approach to quasi-steady state 

l2 This is very acceptable in view of our local truncation error constraint of 10e4. 
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TABLE II 

The Approach to Quasi-Steady State for Selected System Constituents 

Earliest time (in set) at which general 
solutions agree with quasi-steady state No. of operating 

solution cycles required to 
Constituent (three significant figures) reach this point 

0 1.39 x 10-4 343 

CH,CO, . 0.036 509 

HO. 9.21 587 

CHzOHO . 9.21 587 

C,H,O * 9.21 587 

CIH,OHO . 9.21 587 

CH,O * 19.02 600 

for each of these components. It should be mentioned that, prior to t = 19.02 set 
the disagreement between the general, time-dependent (SMOG) solutions and the 
corresponding quasi-steady state values for these seven components was in many 
cases as great as ten orders of magnitude. While this comparison was not carried 
out for all of the twenty-nine system components, it can reasonably be suspected 
that the other twenty-two components also experienced departures of their 
instantaneous steady-state13 values from the general, time-dependent solutions over 
varying portions of the time domain. Neither have we demonstrated that the quasi- 
steady state values for all of the components sooner or later come into agreement 
with the fully time-dependent solutions. But the above results for the seven com- 
ponents we considered is suggestive that such may be-the case. 

DISCUSSION 

With this background information we can now suggest possible sources of the 
differences, shown in Figs. 1 and 2, between the present work and that of Westberg 
and Cohen: First, quasi-steady state assumptions are suspect. They are suspect 
because the large early errors (ten orders of magnitude) in these seven components 
can easily introduce errors into the values of some of the other twenty-two 
components. These errors may persist and feed back their influence to other 

I3 I am using the terms “instantaneous-steady state” and “quasi-steady state” interchangeably 
because both terms are commonly used regarding the same procedure. 
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components, e.g., C,H, , NO,, 03, or CO, at varying later times in the problem 
history. Obviously this effect appears not to have been too serious for Westberg 
and Cohen in this example. However, the extreme magntidue of the departures seen 
above suggests the very real possibility of disastrous errors in other examples with 
other users. This effect would not occur in my own runs with program SMOG 
because I did not allow any of the (twenty-nine) components to be compromised. 
That is, I simply calculated the instantaneous steady-state values in an independent 
“side-calculation,” but never allowed these values to be used in the main solution 
sequence. Secondly, the error amplification properties of Westberg and Cohen’s 
routine are different from those of the Gear routine. I believe they use a modified, 
explicit Runge-Kutta method; whereas the Gear method is implicit. Thus, even 
though there are only small differences between our C4H,, NO, , 0, , and CO 
concentrations at t = 19.02 set, these small differences could propogate quite 
differently from that point on by the respective methods.14 We have already 
indicated the reason for this possibility. Namely, either method only has estimates 
of local truncation errors and not of the accumulated (or global) numerical errors. 
Third, and concomitant with the above point is accuracy control. The respective 
methods are no doubt different in this regard, which also gives rise to different 
accumulated errors. Finally, we trust that the probability of programming errors 
is small in the respective routines. 

It should be noted here that a somewhat safer way of tampering with a system 
is to assume quasi-steady state values for a constituent (thereby deleting the time- 
dependent equation from the initial set) only at times after it can be demonstrated 
to be a valid assumption. But there are two main drawbacks to such a procedure: 
it is most often more costly in machine time to do this satisfactorily than it is to 
use a suitable stiff method (at least in the systems I have worked on); and, more 
seriously, such a procedure leaves one entirely vulnerable to secular behavior of any 
of the constituents (i.e., nonquasi-steady state behavior can recur and one would 
never know it). 

SUMMARY 

This article has been directed primarily to the applied scientist who may be 
relatively unititiated in some areas of numerical analysis. The main intent was to 
alert the general user to the hazards of stiffness and perhaps assist him in recog- 
nizing its symptoms; especially since there is rarely a simple advance warning that 
a system will suffer stiffness difficulties. Through a qualitative description of 

I4 This would be true even if all of the other twenty-five components were in agreement at that 
time (t = 19.02 XC), which is, of course, unlikely. 
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common causes and effects of stiffness and through the force of a current practical 
example, we have seen somewhat typical stiff behavior. Resort to quasi-steady state 
assumptions on carefully selected system components was also seen to be somewhat 
hazardous; particularly in large systems in which the coupling of various com- 
ponents is unfathomable. Means of ameliorating stiffness were indicated; and a 
routine using Gear’s method, which incorporates these means, solved the above 
problem in a reasonable fashion. 

However, along with the good there is also some bad. The severest critic will 
point out that none of the numerical solutions cited above necessarily represent 
the true solution of the set of differential equations. This is, of course, accepted and 
simply emphasizes the need for caution, particularly in this area where extra- 
polation of general statements from simple particular examples is so very perilous. 
Perhaps an appropriate attitude in dealing with numerical solutions for such 
systems at present is that of quantitative analysis in chemistry; namely, a number of 
samples are tested (in our case, a number of independent solution methods would 
be applied to a given problem), and carefully considered confidence limits accom- 
pany quoted results. In the example cited above, it could only be claimed that the 
standard (A-stable) Adams and the SMOG solutions were within four percent of 
each other at very early times (t = 6.39 x 1O-3 set), and the Runge-Kutta 
samples had to be rejected due to observed instabilities. We had no other routine 
available which yielded asymptotic solutions. Therefore, the only statement of 
confidence that can be made about the SMOG solutions from 1 = 6.39 x 1O-3 set 
to t = 7000 set is that the solutions were stable and reproducible with the 
application of increasingly restrictive local truncation error constraints. In cases 
such as this, where analytic solutions are unavailable and manifestly A-stable 
numerical solutions cannot reach late times, little more can be said pending 
improvements in numerical (or analytic) analysis. 

Finally, how is one to know a priori that a system may be stiff? At present the 
practitioner is probably best advised to find out by simply employing a suitable 
stiff routine15 on each new class of problems. These solutions can be checked, as 
far as one’s budget allows, with a standard A-stable method. If the problem turns 
out not to be stiff, successive runs should be made by the more economical standard 
methods, keeping an eye out for the onset of stiffness symptoms as parameter 
changes are made. 

I6 For very large sets of equations current stiff methods can become prohibitively costly because 
of the great amounts of machine time required for solving large matrix equations. Resolution 
of this shortcoming will, perhaps, come only with further developments in the numerical analysis 
of stiff systems. 
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